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The problem of stabilize with respect to some of the variables (partial stability) is considered. The motives and "aftereffects" of 
the designation of admissible boundaries within which the "uncontrollable" variables are allowed to vary in a given problem are 
analysed. It is shown that the imposition of additional constraints on the "uncontrollable" variables while testing for partial stability 
makes it possible (and desirable) to use Lyapunov functions with properties "intermediate" between the conventional ones. It 
is also shown how to define the notion of sign-definiteness of Lyapunov functions with respect to some of the variables in order 
to avoid such "intermediate" properties. The main partial stability theorem is extended in order to deal with the newly arising 
conditions. Certain assumptions are introduced that provide a better understanding of the performance of partially stable systems. 
Examples are given. 

The problem of the ,,;tability of motion with respect to some of the variables [1, 2], also known as partial stability 
(IS),  arises naturally in applications. In the most general context, the PS problem is analysed as a special kind of 
y-stability problem, c~ncerning the position x = (y, z) = 0 of a system of ordinary differential equations [2-14] 

x* = x(t, x), x(t, 0).  0 (oa) 

In such treatments, system (0.1) is constructed (anew each time) as a system of perturbed motion in the process 
whose stability is under investigation. Among other problems related to the PS problem are: stability with respect 
to given state functions [15, 16], stability with respect to two measures [17-19], and polystability [20, 21]. 

The present state-of-the-art in PS theory proper and its applications can be judged from [2-14], where the reader 
will find information about the problems, methods and special features of the research, as well as a bibliography. 

However, tittle attention has been paid to the motives and "aftereffects" of the designation of the admiss~le 
boundaries within which the "uncontrollable" z-variables may vary in PS problems. Yet, the question of whether 
the investigation of I 'S problems is effective depends essentially on this factor. 

In addition, the Sl~cial features of PS system performance deserve attention. The fact is that PS theory is 
concerned with rather delicate properties of the system. The necessary "persistence" of these properties depends 
on a larger number of factors than do the properties of"total" stability. What is required is a deeper understanding 
of the nature of PS problems, of the laws governing the performance of PS systems and of the mechanisms through 
which PS may be achieved or lost. 

The purpose of this paper is to study these questions. 

1. M O T I V E S  F O R  D E S I G N A T I N G  A D M I S S I B L E  B O U N D A R I E S  O F  
V A R I A T I O N  F O R  " U N C O N T R O L L A B L E "  V A R I A B L E S  

W h e n  one  is s tudying the y-stability o f  the posi t ion x = 0 o f  system (0.1), the  behaviour  of  the 
z-variables does  not,  in principle, require moni tor ing (provided certain general  condit ions are observed).  
In  the  coupled  sys tem (0.1), however ,  they exert  an impor tan t  influence on the  " m a i n "  y-variables. 

The  factors  tha t  d e t e r m i n e  the  choice of  the  "uncont ro l lab le"  x-variables are  as follows: 
1.AUowance for the "worst case" scenario (other, genera~ conditions being the same) in the variation of 

"uncontrollable" variables. This entails the assumpt ion II z II < "0 and, consequently,  the study of  y-stability 
o f  the  posi t ion x = 0 of  sys tem (0.1) in the domain  

t />  0, II Y II ~< H = const  > 0, II z II < o. (1.1) 

Such considera t ions  m a y  prove  overly cautious. Indeed ,  one  does  not  utilize inequali t ies I zi I ~ H that  
are  valid (or  admis~sible) for  cer ta in  z -components ,  or  relat ions like 13~(t, x) I ~< H.  Such relat ions may  
considerably facil i tate test ing for  y-stability. In  a sense, al lowance for  the  "wors t  case"  scenario in PS 
theory  is c o m p a r a b l e  with the ideas of  game  theory  [22]. 
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2. Allowance for specification of constraints imposed on the "uncontrollable" variables. An alternative 
to the "worst case" scenario. This approach has various meanings. 

2a. Rationalization of the formulation of the PSproblem. This requires subjecting the system to certain 
general estimates (possibly including integral estimates) for the "uncontrollable" variables. This 
considerably simplifies the solution. An example is the study in [10] of the stability of motion of bodies 
containing cavities filled with liquid. 

2b. "Built-in" possibilities for facilitating the solution. Put differently: the use of additional relation- 
ships linking the components of the phase vector of system (0.1). The feasibility of such relationships 
must somehow be verified when solving the problem. This approach provided the basis, for example 
for solving PS problems by constructing auxiliary systems [13]. 

3. Allowance for a knowledge (even if only coarse) of estimates for "uncontrollable" variables. In such 
cases the PS problem for system (0.1) may be reduced to a problem of stability with respect to all the 
variables in an auxiliary system of differential equations of the same dimensions [3]. 

2. E X T E N S I O N S  OF T H E  MAIN PARTI AL S T A B I L I T Y  T H E O R E M  

Let us suppose that the notion of sign-definiteness with respect to some of the variables has been 
defined in some specific manner for the Lyapunov V-functions used in the main theorem. This implies 
that the possible set of variables with respect to which the V-function is sign-definite has been enlarged 
(by including not only phase variables of system (0.1) but also certain functions of those variables). It 
is also assumed that the conditions imposed on the "uncontrollable" variables have been clearly specified. 

Certain assumptions are made in [10] concerning the continuity of the right-hand side of system (0.1) 
and the uniqueness and z-continuability of the solutions of the system. In addition, the following functions 
are introduced: (1) a(r)--continuous and monotone increasing for r e [0, H]; (2) a scalar function 
V(t, x) and a vector-valued function W(t, x), both continuously differentiable in the domain (1.1). It is 
assumed that a(0) = V(t, 0) - 0, W(t, 0) - 0. We shall let I;'denote the derivative of Valong trajectories 
of system (0.1). 

Theorem 1. Suppose that, given system (0.1), one can fred a scalar function V(t, x) and a vector-valued 
function W(t, x) such that, in the domain 

t~>0, I l y l l + l l W ( t . x )  l l~  H, l lz l l<oo 

the following conditions are satisfied 

(2.1) 

V(t. x) ~ a (11 y II + II W(t. x) II ) (2.2) 

V ~< 0 (2.3) 

Then the position x = 0 of system (0.1) is y-stable. 
The proof follows the lines of [2]. For any e > 0, to ~ 0, e ~ (0, H), it follows from the continuity of 

Vand a and from the conditions a(0) = V(t, O) =-- 0 that one can find a number 6(e, to) > 0 such that, 
if II x0 II < 6, then V(to, Xo) <<- a(e). By (2.2) and (2.3), if x = x(t; to, x0) is a solution such that II x0 [I < 6, 
then for all t /> to 

a (1t y(t; to, xn) II + II W (t. x (t; to, Xo)) II) ~< V(t, x (t; t 0, x0)) ~< V(t o, x 0) ~< a(g) 

By the properties of a(r), this implies II y(t; to, x0) II + II W(t, x (t; to, x0)) II < e, t I> to. Consequently, 
II y(t; to, x0) II < e, t i> to, which proves the theorem. 

Discussion of Theorem 1.1. IfW = 0, this is Rumyantsev's partial stability theorem [2]. Inequalities (1.1), which 
represent the "worst case" scenario with regard to the variation of the "uncontrollable" z-variables, are replaced 
by the more restrictive inequalities (2.1). 

2. Inequality (2.2) means that the V-ftmction is sign-definite relative to y and the components of the W.function, 
i.e. (y, W)-sign-defmite in the sense of [2]. It is not a priori obvious how to choose a suitable W-function; it must 
be defined when solving the problem. In this sense the W-function plays the part of a second (vector-valued) 
Lyapunov function (together with the first, scalar-valued, V-function). 

3. We know [10] that a V-function, sign-definite with respect to all its variables, need not be sign-definite with 
respect to only some of them. That is why, even when dim (y) = dim (z) = 1, a function V(yl, Zl) satisfying conditions 
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(2.2) and (2.3) may not be sign-definite either in Lyapunov's sense or relative toy1 (in the sense of [2]). An example 
is the function [14] 

(2.4) 

Indeed, although condition (2.2) holds for W = ylzl and sufficiently small H in the domain (2.1), one has 
lim V = 0 for any fixed Yl and Zl ~ **. Hence the function is sign-definite neither in Lyapunov's sense (V = 0 for 
Yl = 0 and any Zl) nor even in the sense that V(t, x) I> a(ll y II) in the domain (1.i)---the condition for a function 
to be y-sign-definite [2]. Hence it is not sufficient to choose a V-function to test for the y-stability of the position 
x = 0 of system (0.1) that is sign-definite relative to y only (or even relative to a larger number of phase variables). 
One must also consider V-functions that are sign-definite relative to both y and (simultaneously) certain functions 
W = W(t, x). The properties of such V-functions, even in the case dim (y) = dim (z) = 1, may be "intermediate" 
between sign-definiteness with respect to y [2] and in Lyapunov's sense. 

Note that for every 0 < c < 1/2 the curves defining the level surfaces V = c of the V-function (2.4) fall into two 
disjoint classes. The first class consists of open curves encircling the axisy 1 = 0, which are typical for classicaly r 
sign-definite V-functiions (in the sense of [2]). The special feature here is the existence of a second, additional elass 
of curves: it, too, cortsists of open curves, but these curves recede from the positionyl = zl = 0 as c is decreased 
and asymptotically approach the axes Yl = 0 and zl = 0 as Zl ~ .o andyl ~ ** respectively. 

4. If Vdepends (explicitly) on t, then even when dim 00 = dim (z) = 1 one may have "intermediate" properties 
not only as Zl ~ ~*. For example, the function 

V y/( l  +e2t z/ )(l +e 4t ~ , 4 Z 4 ) - I  
= . I  I (2.5) 

is not sign-definite in Lyapunov's sense. For W = e'ylzl and sufficiently small H, condition (2.2) holds in the domain 
(2.1). But this V-fun, gion is not yl-sign-definite in the sense of [2], because V ~ 0 as Zl ~ ** (or t ---} **) for any 
fixed y, yl (oryl, zl) 

5. In the case 

V(t, x)---V*(t, y,W(t, x)) (2.6) 

the verification of condition (2.2) reduces to verifying that II* is sign-definite in Lyapunov's sense. In particular, 
if V* is a quadratic fibrin in the variables y and W, one can use the general Routh-Hurwitz criterion. Incidentally, 
if the V-function possesses the structure of (2.6) the possibilities for solving the problem posed in [10]--analysis 
of the y-stability of the position x = 0 of system (0.1) in terms of quadratic forms--are improved considerably. 
Unlike [10], the structure represented by (2.6) enables "essentially non-linear" V-functions to be used in solving 
that problem. 

6. Theorem 1 may be extended in various directions. Thus, if one demands that, besides conditions (2.2) and 
(2.3), the condition V(t, 0, z) --- 0 should also hold in the domain (2.1), then the position x = 0 of system (0.1) is 
y-stable for large z0 (in the sense of [13]). 

Let  b(r) and U(t, x) be functions o f  the same type as a and V. 

Theorem 2. Suppose that, given system (0.1), one  can find two scalar functions V(t, x), U(t, x) and a 
vector-valued function W(t, x) such that,  besides (2.3), the following conditions also hold in (2.1) 

V(t. x) ~> a ( II y II) (2.7) 

U ( t , x ) ~ b ( l l W ( t , x ) l l ) ,  W ~ 0  (2.8) 

Then  the position x = 0 of  system (0.1) is y-stable. 

Proof. If  conditions (2.2) and (2.7) hold in the domain  (2.1) for  any e > 0, to t> 0, e ~ (0, H ' ) ,  one  
can find a number  ~l(e, to) > 0 such that, i fx  = x(t; to, Xo) is a solution, II Xo II < 81, satisfying the inequality 
II y(t; to, x0) II + II W(t, x(t, to, x0)) II ~< H for all t I> to, then II y(t; to, x0) II < e, t i> to. 

On the other hand, if condition (2.8) holds in (2.1), then for any to I> 0 one can find a number ~2(t0, 
e) > 0 such that, if II xo II < ~2, then II W (t, x(t; to, Xo)) II ~< H - e, t i> to. 

Setting 5 = rain (~1, ~2}, we conclude as a result that for any e > 0, to/> 0, e ~ (0, H)  and every 
solution x = x (t; to, Xo) such that  II x0 II < ~5, it is also t rue that  II Y (t; to, x0) I] < e, t I> to. 

Discussion of Theism 2. 1. A V-function satisfying inequality (2.2) in the domain (2.1) also satisfies inequality 
(2.7). Consequently, it is y-sign-definite in the domain (2.1) (but not in the domain (1.1), as in [2]). However, the 
validity of conditions (2.3) and (2.7) in the domain (2.1) does not guarantee the truth of the inequality II y(t; to, Xo) II 
+ II W(t, x(t; to, Xo)) II ~< H, t >/to along all solutions of system (0.1) for sufficiently small II Xo II. (There is no guarantee 
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for the verification of the constraints (2.1) imposed here on the "uncontrollable" variables.) Therefore, a V-function 
that satisfies conditions (2.3) and (2.7) in the domain (2.1) does not guarantee y-stability of the position x = 0 of 
system (0.1). But if condition (2.3) holds, a (y, W)-sign-definite V-function does guarantee y-stability. In that case 
the constraints imposed on the "uncontrollable" variables are indeed observed. 

2. A V-function that is y-sign-definite in (2.1) guarantees y-stability if it can be proved that II W(t, x) II ~< H, t/> 
to along the corresponding solutions of system (0.1). For example, this can be done using one more Lyapunov 
function. This approach (condition (2.8)) is implemented in Theorem 2. 

3. S P E C I F I C A T I O N  O F  T H E  N O T I O N  O F  A y - S I G N - D E F I N I T E  
V - F U N C T I O N  

O n e  can avoid the situation in which V-functions possesses " in te rmedia te"  p roper t ies  of  the 
kind cons idered  above.  To that  end the fact that  V is (or  is not)  y-sign-definite mus t  be  verified not  in 
the domain  (1.1) but  over  the set  M = (x: x(t; to, x0)} of  solutions of  system (0.1) for  sufficiently small 
I] x0 II. T h e  verif ication (when possible) need  be  p e r f o r m e d  only for  y-stability. 

Theorem 3! Suppose  that,  given system (0.1), one  can find a funct ion V(t, x) such that ,  besides (2.3), 
the  following condi t ion also holds in M 

V (t. x (t; to, x0)) >~ a (11 y (t; t 0, x0) II) (3.1) 

T h e n  the  posi t ion x = 0 of  system (0.1) is y-stable.  

Discussion of Theorem 3. 1. The conditions of Theorem 3 deviate from those adopted in [2] in that y-sign- 
definiteness is verified for Vnot in the domain (1.1) but over the setM. A similar result (unrelated to the questions 
under discussion here) was established in [6]. 

2. If condition (2.3) is satisfied, the V-functions (2.4) and (2.5) will beyrpositive-definite in the sense of (3.1). 
Indeed, by (2.3), one has I W(t; x (t; to, x0)) I ~< H in the set M. Thus, cases that lead to "intermediate" properties 
are excluded. 

3. The function 

V = (3 ,2 + z 2 )(1 + z 4)-I (3.2) 

(see [10]) is a sign-definite in Lyapunov's sense but not relative toy1 (in the sense of [2]). But if IY,~ 0, this function 
is yrsign-definite in the sense of (3.1). 

Note that for every 0 < c < 1/2 the curves that define the surfaces V = c of the V-function (3.2) split into two 
disjoint classes. The first consists of closed curves encircling the positionyl = zl = 0, which are typical for classical 
Lyapunov V-functions. The special feature is the existence of a second, additional class; it consists of open curves 
that recede from the positionyl = zl = 0 as c is decreased. 

4. E X A M P L E  

Consider the motion of a point of unit mass in a constant gravitational field, constrained to move on the surface 

x 3 = f ( x l .  x2) , f=x~(l+x2)(l+x~x4) -I (4.1) 

in three-dimensional XlX2X3-space, with the x3-axis pointing vertically upward. 
The kinetic and potential energies are 

2 

I-I = gf(xl,  x 2), g = const > 0 

Putting y = (xl, xi, x~), z = x2 and introducing auxiliary functions V = T + II, W = XlX2, we obtain 

Consequently, conditions (2.2) and (2.3) hold in (2.1) for sufficiently small H. As a result, the equilibrium position 
of the point 
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xi =xi = 0(i ffi 1,2,3) (4.3) 

is y-stable by virtue of Theorem 1. 
At the same time, the V-function is not sign-definite---whether relative to y in the sense of [2] (V--> 0 for xi = 

xi = 0, Ix2l ~ oo and any fixedxl) or in Lyapunov's sense (V ffi 0 forxl = xi = xi and anyx2). 
By (4.2), the position (4.3) is also W-stable. Summing up in view of (4.1), we conclude that this position is stable 

with respect to xl, x3, xi, xi (including the ease of large x20 in the sense of [13]). 
In addition, we note that the function V = T + II is y-sigu-defmite in the sense of (3.1) and satisfies the assumptions 

of Theorem 3. 

5. S P E C I A L  F E A T U R E S  IN THE P E R F O R M A N C E  OF PS SYSTEMS 

We will now formulate a few assumptions that afford a deeper understanding of the laws governing 
PS system performance. 

1. The predictabiility of  structural changes as a precondition for normal PS system performance. This 
assumption is motivated by the greater sensitivity of the PS property (compared with stability with respect 
to all variables) to changes in system structure. The implication is that the idea of "robustness" in the 
PS theory cannot be as general as it is in the theory of stability with respect to all variables. This is 
natural, because PS theory deals with more "delicate" cases, in which "improved" or "better" stability 
is simply impossibh:. In addition, PS properties are sometimes not just desirable but absolutely necessary 
[14]. 

Owing to this conclnsion, any decision about whether to use the results of PS theory must be made 
at the design stage in each specific case. 

However, if the PS problem is treated as an auxiliary tool in the analysis of stability with respect to 
all the variables, th,~ situation is different. In such cases PS analysis is admissible within limits determined 
by the robustness of the property of stability with respect to all variables. 

For example, partial stabilization (a development of the PS problem as applied to control systems) 
plays an auxiliary role in the design of robust control strategies for the angular motion of bodies (such 
as spacecraft) [13, IL4]. This approach has also been extended to game-theoretical control problems under 
conditions of interference [23, 24]. 

A better understanding of the problem may also be gained by clarifying the nature of the relationships 
among notions that determine whether PS properties are preserved. Among the latter are PS properties 
under persistent perturbations (PP) and parametric perturbations. 

2. The problem of  PS under PP is not generally equivalent to the PS problem of  preserving stability even 
under small parametric perturbations. This is the case even for linear autonomous systems~ Such systems, 
although partially stable under PP, may lose their stability when even slight changes are made in certain 
coefficients. This does not occur in the problem of stability with respect to all the variables. 

At the other end of the "fragility" scale for PS properties one has the following. 
3.A system that loses PS is nevertheless frequently "structurally stable" in the Andronov-Pontryagin sense. 

The phase portrait of a "structurally stable" system is, in principle, invariant under minor variations of 
the parameters. Hence the loss of PS properties in such cases implies only a certain "rotation" of the 
phase portrait in the phase plane. 

4. The possibility of  the invariance of  PS properties under arbitrarily large PP in certain channels of system 
(0.1) [13]. This question is related to the general problem of invariance [25]. 

6. E X A M P L E S  

1. Consider the system 

Ai.ri=(A2-A3)x2x3+u I (I  2 3) (6.1) 

which describes the angular motion of a rigid body driven by controlling torques ui (i = 1, 2, 3). (Only one of the 
three equations is s]aown; the others are obtained by cyclic permutation of the indices 1 ~ 2 ~ 3.) In the case 
ui = ~xi (~ = const < 0, i = 1, 2), u3 --- 0 the equilibrium positionxi = 0 (i = 1, 2, 3) of the body is asymptotically 
(xl, x2)-stable (property K) for any admissible values of Ai. And then, if A3 is the greatest or smallest of the Ais, 
property K holds for any x30 (property K:). If in addition AI(A2) is the mean value of Ai, the equilibrium position 
is also asymptotically Xl(X2)-stable for large X2o(Xlo) in the sense of [13]. 

Property K1 may be verified by using a Lyapunov function independent of x3, namely, V = AI(A1 -A3)x] + 
2 A2(A2-A3)x2. Consequently, it is also preserved under PPs R = R(t, x), R(t, 0) ~ 0 of the form R = (0, O, R3), i.e. 

under PPs in one channel of system (6.1). (R3(t, x) is any function such that the conditions for existence, uniqueness 
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and xa-continuability of solutions of the "perturbed" system (6.1) hold in a domain t 1> 0, I xi I ~< H (i = 1, 2), I x3 I 
< **.) Thus, property K1 is invariant under PPs of the type described. 

Cases are possible in which a PS property is not only preserved but also becomes asymptotic when PPs are applied 
(of. examples in ([13]). In these cases, however, further restrictions must be imposed on the PPs. 

2. The position y~ = zl -- 0 of the system 

Yi =-y l  +~1, zi = zl (e =const) (6.2) 

is asymptoticallyyrstable only if e = 0. On the other hand, this is a system of "general position" [26] for any e, 
with a phase portrait of the "saddle" type. As ~ passes through the value E = 0, only a "rotation" of the phase 
portrait is observed. The rotation can be as small as desired provided e is sufficiently small. When e = 0, the 
separatrices of the "saddle" coincide with the coordinate axes of the phase plane of system (6.2). 

7. M E C H A N I S M S  G I V I N G  R I S E  TO PS P R O P E R T I E S  

The "degree of structural stability" of a PS system depends on the mechanism by which PS properties 
arise. We will dwell on one aspect of this problem. 

PS properties may be produced by different mechanisms even in linear systems. Thus, consider the 
mechanism giving rise to asymptotic y-stability in the following linear autonomous system, which is 
unstable in Lyapunov's sense 

y" = Ay +Bz,  z" = Cy + Dz (7.1) 

y ~ R n~. z ~ R p, m >t !, p >~ 2 

Here  the terms of z(t)-solutions with non-negative eigenvalues are cancelled out in the linear 
combinations Bz of "uncontrollable" z-variables. This is a stiff mechanism. How it "works" depends 
on the set of numbers of the matrices B and D. That  is why the conditions for asymptotic y-stability in 
the unstable system (7.1) may include not only inequalities but also equalities linking the coefficients 
of the system. 

However, when one considers non-autonomous systems--even linear, and afortiori non-linear ones - -  
the mechanism by which PS properties arise is "softened". Even in linear non-autonomous systems, PS 
criteria including no equalities among the system coefficients are quite normal. 

In particular [13], one mechanism is based on "compensation" in B(t)z for the undesirable tendency 
II z II ---> ** in the functions occurring in B(t).  Other  mechanisms producing PS properties are possible 
in linear systems. They are more deeply related to the process of integrating such systems. 

8. R E L A T I O N S H I P S  B E T W E E N  C O N D I T I O N S  F O R  y - S T A B I L I T Y  AND 
z - C O N T I N U A B I L I T Y  OF S O L U T I O N S  OF S Y S T E M  (0 .1)  

Solutions of system (0.1) may not be z-continuable even ff they are y-stable. For that reason z- 
continuability and y-stability are generally studied separately. In fact, y-stability conditions in themselves 
may enable systems with z-non-continuable solutions to "pass" as admissible. 

For example, consider the system 

Yi =-yl +Y~Zl. zi = z I -2YlZ 2 (8.1) 

The Lyapunov function V = y2 + (-Yl + Y2Zl)2 >~ ~ ,  f" <~ 0 satisfies the assumptions of the theorem proved in 
[2] concerning theyrstability of the positionyl = zl = 0. The assumptions of the asymptoticyl-stability theorem 
[13] are also satisfied, since system (8.1) admits of the construction of an auxiliary Ix-system [13])~1 = -Yl + !11, 
l i l= -it1. 

However, the solutions of system (8.1) (assuming, for simplicity, that to ffi 0) have the form 

Consequently, they are not zrcontinuable. In an arbitrarfl_ylsmall ncighbourhood of yl = Zl = 0 there are fixed 
valuesyl0, zl0,(Yl0Zl0 < 0) such that zl = -0 for t = -(Yl0zl0)- > 0. 

Thus, both the method of Lyapunov functions and the method of Ix-systems [13] in PS problems may enable 
systems with z-non-continuable solutions to "pass" as admissible. 
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